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LETTER TO THE EDITOR 

The adaptive map model 

J F Fontanari 
lnatituto de Fisica e Quimica de SZo Carlos. Univenidade de SZo Paula, Caixa Postal 
369, 13560 S8o Carlos SP, Brazil 

Received 7 February 1991, in final farm 28 March 1991 

Abslraa. The adaptive map is a simple model far evolutionary searches on a fitness 
landscape. The map is detined in the set Y = { I ,  2 , .  . . , M),  with each integer representing 
both an organism and its fitness. An integer can be mapped on itself or on any larger 
integer with the same probability. We calculate the probability distribution olthe number 
or attractors in a map, as well as the distribution of the lengths ofthe searches. We study 
the statistical stmcture afthe basins of attraction and compare it  with the structures obtained 
in the random map model and in the mean-field spin glass. 

Evolution of species in a fixed environment may be viewed as a search driven by 
mutation and pruned by natural selection on a fitness surface. Although mutations can 
produce organisms less fit than their ancestors, they are doomed to die out due to the 
competition with fitter variants. Thus, by choosing an appropriate timescale, we may 
think of evolution as a walk on the phase space of possible organisms where each step 
produces a fitter individual. However, depending on how the fitness values are ascribed 
to the organisms and on the type of move allowed on the phase space of organisms, 
the whole process may not end up in the fittest individual (the global maximum of 
the fitness landscape), but get stuck in low-fitness individuals which, nevertheless, are 
fitter than any one of their allowed mutant variants (local maxima of the fitness 
landscape). The beginning steps towards a theory for this kind of search, called adaptive 
walks, were put forward by Kauffman and Levin (1987) and a thorough discussion of 
the biological relevance of the adaptive walks is presented in Kauffman (1989). 

In this letter we propose and study analytically a simple model for the adaptive 
walks described above. Each organism is represented by an integer between 1 and M 
which also measures the fitness of the organism. Thus 1 is the least fit organism while 
M is the fittest one. The evolutionary search is modelled by the following random 
map which we shall refer to as the adaptive map. Starting from organism 1 S i s  M, 
one chooses at random one integer A( i )  among the M + 1 - i integers which are larger 
or equal than i. If the organism is i in a given instant then it will be A( i )  in  the next 
step, therefore A ( i )  = i implies that i is a fixed point of the map. For a fired map A, 
the process is repeated with different initial organisms until the phase space is exhausted. 
The fixed points are interpreted as maxima of the fitness landscape. Clearly, M, the 
global maximum, is a fixed point of any realization of the map A. 

A salient aspect of the adaptive map is that its attracton are fixed points only, in 
contrast to the random map model (Derrida and Flyvbjerg 1987a), where A( i )  is chosen 
randomly among the M integers, which may have limit cycles of period as large as 
M. In this sense the adaptive map is more similar to the zero-temperature Monte Carlo 
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dynamics usually ascribed to spin-glass models, so that a comparison between these 
two systems may be of interest. 

We focus on the statistical properties of the adaptive map computed in the thermody- 
namic limit M + m. We show that the map is not self-averaging even in this limit. We 
calculate several properties of the map, in particular, the probability distribution of 
Y = Zs W', where W, is the normalized size of the basin of attraction (weight) of the 
attractor S: it differs remarkably from the mean-field spin glass (Mtzard et al 1984) 
and the random map (Derrida and Flyvbjerg 1987a, b) distributions. 

We start by computing the probability distribution PN+,  that an adaptive map has 
exactly N +  1 attractors (OG N s M - I ) .  The probability that i , ,  i,, . . . , iN and M are 
the only attractors of a map is 

P ( i  ,,..., i,, M )  

... 1 
M +  1 - i ,  

- - 
M +  1 - iN j + i , , . , i m ~  

1 1  ... 1 -- ~- - 
M-i, M - i N  M '  

Summing over all the distinct sets of N attractors and keeping only the leading term 
we obtain the Poisson distribution 

1 lnNM 
M N! ' 

P , + , = - -  

Thus, the average number of attractors in an adaptive map is In M and the probability 
the map is indecomposable, i.e. has a single attractor, is P, = I /  M. The attractors divide 
the phase space in N + l  disjoint valleys or basins of attraction whose statistical 
properties we shall study in detail in this letter. 

Let us compute the distribution of the lengths of adaptive walks starting from a 
randomly chosen integer 1 G I =Z M at t = 0. The probability P,,,(k) that a map reaches 
a fixed point at t = k before passing tthe integer IS J S M is given by 

Pi.J(k) = 

with OS k S J - I .  Taking the limit M + m and assuming that J - I + m we obtain 

(3) 
1 

... i 1 f: 1 

M+1-I  i,=l+l M+1- i ,  ;2=i ,+ l  M + 1 - i 2  i 1 
jL=i , . ,+l  M + l - i k  

1 1  M - I  
M - I  k !  M + I - J  

- ----In*( ). 
Therefore the probability a walk stops in exactly k steps is 

1 Ink(M-I)  
P1.M ( k )  =- M - I  k !  

(4) 

and then the average length of such walks is i= In(M - I). This logarithmic dependence 
on the number of points of the phase space accessible from I was also found by 
Kauffman and Levin (1987) in their analysis of adaptive walks. 
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At this point it is natural to ask for the probability Q, that an adaptive walk stops 
exactly at J. This can easily be obtained from equation (4) as follows. The probability 
that a walk stops before passing J is simply 

( 6 )  
1 

M + I - J  

I - I  

p l , J =  P I , J ( k ) =  
k=O 

independently of the starting point I! Hence, 

1 
( M  + 1 - J ) ( M  +2  - J )  QJ= PI .J -PI ,J -B=  (7) 

forinstance,QM =f,QM-,=b,etc , . . . (Xy=I Q,=I).CIearly,equation(7)mustcontain 
some information about the basin of attraction of 1. For a given map A, the probability 
that n randomly chosen integers fall on the same attractor is Y,, = Xs W: where W, 
is the weight of the attractor S. The average over maps yields 

where p ( J )  is the probability that J is an attractor, i.e. that A(J)  = J, 

Here -= d WJf( W,) W ;  a n d f (  W,) is the probability that the weight c attractor 
J is between WJ and WJ + d  W,. Since p (  J ) R  gives the probability that n integers 
fall on attractor J, inspection of equation (7) leads to 

- 1 
M + 2 - J  

w, = 

and x= 1 .  
We must remark that equation (7) could be derived in a simpler way (though not 

equation (5)) by calculating the probability QI ( k )  that a walk stops at J in 1 s k < J - I 
steps, 

1 I - ,  

. . .  1 1 I - I  1 1 
QJ(k)= M + 1 - I  M +  1 - J  i,z+, M +  1 -i, ik.,=ik.2+l M + I  - i k - [  - 
and then summing over k. To obtain W: we must calculate the probability Q: that 
two randomly chosen integers, I > 1', fall on attractor J. Let us consider the probability 
Q:(/c, m) that a walk starting at I joins, in the mth step, a walk started at I' and 
reaches attractor J in the kth step: 

1 1 1 
"(' m ) =  M + 1 - I  M f l  - J M + 1 - I '  

with j .  # I, i , ,  . . . , i,-, Vn. Taking i ,  - l'+ m (because I - I' is order M with probabil- 
ity 1 in the thermodynamic limit), neglecting terms of order M-' and performing the 
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summation over k' we obtain that the contribution from the walk started at I' to 
equation (12) is simply 

1 
M +2- i,,, . 

Hence, we can easily show that Q:(k, m) is of order M - ' x  Q:(k, k) for m # k Since 
the number of steps in a walk from I to J is approximately In( J - I) (see equation 
( S ) ) ,  the total contribution to Q: from the processes with m # k is of order 
M-' In(M) Q:(k, k), which can be neglected in the thermodynamic limit when com- 
pared with Q:(k, k). Thus, taking into account only the process with m = k, i.e. i,,, = J, 
we find 

1 1 
"= M + 1 - J ( M  + 2 -  J ) 2  

- 
so that W : = q 2 .  Generalization of the above argument to higher moments leads to 

f (wJ)=6(WJ-%).  (15) 
Obivously, this equation does not imply that the weights are the same for all realizations 
of A since the set of attractors is different for each realization. The scenario we can 
infer from equations (2), (10) and (15) is that, on average, the phase space consists 
of a few, 0(1), attractors with macroscopic weights and of an infinity, O(ln M), of 
attractors with microscopic, O( M - ' ) ,  weights. 

Some comments regarding the validity of the above results are in order. Strictly, 
they are valid only in the limits M +03 and I -  I+co.  An a posteriori argument to 
justify the latter limit is as follows. In the thermodynamic limit, equations (9). (10) 
and (15) show that the attractors which determine the statistical properties of the 
valleys must be such that M - J is of order 1. On the other hand, since the initial 
integer I is chosen randomly among M integers, the probability that M - I  is of order 
1 is proportional to M-', vanishing then in the thermodynamic limit. Therefore 
J - 1 - m  when M-m. 

The statistical properties of the adaptive map follow directly from the knowledge 
of p (  J )  andf(  W,). For instance, we can show that y, the probability that n randomly 
chosen integers fall on the same attractor, satisfies the recursion relation 

r. = F"-, fl  - l ( n )  n 3 2  (16) 

where l(n)=Xz, l/i" is the Riemann zeta function. Hence, E-0 .35 ,  %==0.15, 
Y,-0.07, etc,. . . . Specially interesting is %=2- 7r2/6: it is the first moment of the 
distribution II( Y) where Y = Xs W', and the sum is over all attractors of a particular 
realization of map A. The second moment of II( Y ) ,  

' 

- 

with P( J, J ' )  = ( P( J )  -P( J ) P (  J ' ) ) ~ J , J , +  P( J ) P (  J 'L  yields - 
Y2 = v*+ 14-56(2) -35(3) -21(4). (18) - 

Since Y 2 -  v2-0.005 is a non-zero, Y is a non-self-averaging quantity and therefore 
the properties of the adaptive map depend on the particular realization of A, even in 
the thermodynamic limit. 

Next we shall try to reconstruct the distribution II( Y )  from its moments. Since M 
is an attractor of any realization of A ( p ( M ) =  1) with weight W, = f  we can write 
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Y = a +  ? where ?=ZS+M W: and thus consider the distribution II( ?) instead of 
II( Y). In contrast to the random map model, if an attractor and its basin of attraction 
are removed from the phase space, the resulting restricted map does not have the same 
statistical properties as the original adaptive map. Thus, there are no short cuts to the 
computation of the moments of II( ?) and we have to resort to a direct approach, 
where the moments arccomputed from $eir definitions (seeequation (17) f o r a n  
example). We &nd ?= 1.051 x IO-', Y2=1.555x10-*, ?'"=2.610x lo-', Y4= 
4.732 x 11( ?) is then developed on the basis of the Legendre 
polynomials yielding the two curves shown i n  figure I ,  obtained by inverting the first 
four and the first five moments of II( ?). It is not difficult to guess the actual shape 
of II( ?) from these curves. It differs remarkably from the shapes of the distributions 
obtained for the mean-field spin glass (Mtzard et al1984) and the random map model 
(Derrida and Flyvbjerg 1987a, b) which have singular behaviour at Y = 1 and Y =f. 
However, we must stress that the method of constructing II( ?) from its first moments 
is not well suited to detect singularities and thus the existence of such singularities in 
11( ?) cannot be discarded (Derrida and Flyvbjerg 1987b). This reference also gives 
an example of a disordered system, the problem of breaking the interval, where II( Y) 
is non-singular. 

and Ys = 1.042~ 

5.0 

1.0 

-1.0 
0.0 0.5 I .o 

7 
Figure 1. Reconstruction ern( ?) by projection on the Legendre polynomials. T h e  broken 
curve is obtained by inverting the first four moments and the full C U N ~  by inverting the 
first five moments. The broken horizontal line indicates the zero of the vertical axis. 

It is interesting to note that the fitness landscape of the adaptive map model 
possesses a kind of 'Massif Central' structure: equation (10) shows that all attractors 
with non-zero weights are located close to the global maximum M, corresponding then 
to high-fitness local maxima. 

In summary, we study a map defined in the set 4 = { 1,2 , .  . . , M } ,  where an integer 
can be mapped on itself or on any larger integer with the same probability. The 
attractors of this map are fixed points only. The trajectory from a randomly chosen 
initial integer I to a fixed point J determines an adaptive walk. We obtain that the 
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probability distributions of the number of fixed points and of the lengths of the adaptive 
walks are given by Poisson distributions with means In( M )  and In( M - I), respectively. 
We depict the distribution II( Y), where Y = L-W; and Ws is the normalized size of 
the basin of attraction of S and show that the map is not self-averaging even in the 
thermodynamic limit, M + W. 

This work was supported in part by Conselho Nacional de Desenvolvimento Cientifico 
e Tecnol6gico (CNPq). 
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